Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat. |
En teoria de la probabilitat, la llei dels grans nombres més senzilla és un teorema segons el qual quan el nombre d'observacions d'un fenomen aleatori és molt gran, la freqüència relativa d'un esdeveniment convergeix quasi segurament a la probabilitat de l'esdeveniment. Més generalment, l'expressió lleis dels grans nombres indica una col·lecció de teoremes que tracten del comportament de la mitjana d'una família de variables aleatòries quan el nombre de variables tendeix a infinit (comportament asimptòtic) sota diferents hipòtesis: variables idènticament distribuïdes o no, independència, existència de moments, etc. Cal remarcar que en aquest context la paraula llei és sinònim de teorema.
Atès que hi ha diversos conceptes de convergència de variables aleatòries, es distingeix entre les lleis febles dels grans nombres, on la convergència és en probabilitat, i les lleis fortes, on la convergència és quasi segura. Com que la convergència quasi segura implica la convergència en probabilitat, qualsevol llei forta implica la llei feble sota les mateixes hipòtesis i, per tant, sembla que n'hi hauria prou en estudiar les lleis fortes. Però aquest no és el cas, ja que d'una banda, sota certes hipòtesis només es pot demostrar una llei feble, i d'altra banda, les demostracions de les lleis fortes són, en general, molt més difícils que les de les lleis febles.
La primera llei dels grans nombres va ser establerta per Jacob Bernoullli en 1713, a partir de la qual es van anar produint nombroses extensions i refinaments, assolint-se un cim amb la llei forta d'Andrei Kolmogórov de 1933. Actualment contínua sent un camp de recerca molt actiu.
Gràcies a la llei que hem comentat al principi de l'aproximació de les freqüències relatives d'un esdeveniment a la seva probabilitat, l'anomenada definició freqüentista de la probabilitat queda inclosa com un teorema dins de l'axiomàtica de Kolmogorov. D'altra banda, experimentalment podem:
Aquesta llei és important perquè garanteix relacions estables entre les mitjanes de diversos esdeveniments aleatoris. Per exemple, mentre que un casino pot perdre diners en una simple tirada de la ruleta, els seus guanys tendiran a un percentatge predictible amb un nombre gran de tirades. La sort del jugador (bona o dolenta) serà, a la llarga, superada pels paràmetres del joc. Cal recordar que la llei, però, tan sols s'aplica quan es considera un nombre elevat d'observacions, tal com el nom indica. El principi no es pot aplicar per un nombre petit d'observacions ni es pot esperar que una tongada d'un valor concret sigui immediatament "equilibrada" amb l'obtenció d'altres valors (consulteu la fal·làcia del jugador).