Nombre real

En matemàtiques, els nombres reals[1] () informalment es poden concebre com els nombres associats a longituds o qualsevol mena de magnitud física que se suposa que és contínua. Per tant, en aquest sentit, són els nombres que es poden obtenir quan es mesuren magnituds contínues.[2]

El fet que una magnitud sigui contínua vol dir que es pot dividir en parts tan petites com es vulgui fins a l'infinit. Això fa que el conjunt de nombres necessari per a representar aquesta mena de magnituds ha d'admetre una quantitat infinita de decimals sense poder imposar que siguin periòdics. En altres paraules, són els racionals (que es poden escriure en forma de fracció) completats pels nombres la representació decimal dels quals és infinita no periòdica,[3] tals com l'arrel quadrada de 2 i π. Aquests últims es diuen nombres irracionals. Entre els nombres reals es distingeix també els nombres algebraics i els nombres transcendents.

El terme de nombre real apareix per primera vegada el 1883 a les publicacions de Georg Cantor sobre els fonaments de la teoria dels conjunts. És un retrònim, creat en resposta al descobriment dels nombres imaginaris. Els nombres reals són al centre de la disciplina matemàtica de l'anàlisi real, a la qual deuen una gran part de la seva història.

La notació original del conjunt dels nombres reals és . Tanmateix, com que les lletres en negreta són difícils d'escriure sobre una pissarra o un full, s'ha imposat la notació .

En matemàtiques, la paraula "real" es fa servir com a adjectiu, amb el significat que el cos subjacent és el cos dels nombres reals. Per exemple, matriu real, polinomi real, i Àlgebra de Lie real.

Representació de la recta real amb exemples de constants reals

.

  1. «Optimot. Consultes lingüístiques». [Consulta: 23 desembre 2023].
  2. Perelló, Carles. Càlcul infinitesimal : amb mètodes numèrics i aplicacions. Barcelona: Enciclopèdia Catalana, 1994. ISBN 84-7739-518-7. 
  3. En efecte, un nombre (real) és racional si el seu desenvolupament decimal és periòdic. Per exemple, 1/3=0,333333… és racional.