La quadratura del cercle és un problema geomètric proposat per matemàtics de la Grècia clàssica. És el repte de fer la construcció amb regle i compàs d'un quadrat amb la mateixa àrea que un cercle donat utilitzant únicament un nombre finit de passos.
El 1882 es va demostrar que el problema era irresoluble, a conseqüència del teorema de Lindemann-Weierstrass que demostra que pi (π) és un nombre transcendent, en lloc de ser un nombre algebraic. És a dir, pi (π) no és l'arrel de cap polinomi amb coeficients racionals. Algunes dècades abans del 1882 es va demostrar que si π és un nombre transcendent, llavors la construcció amb regle i compàs seria impossible. No va ser fins a aquest any que es va demostrar que π és transcendent. Per tant, no es poden fer construccions geomètriques exactes de la quadratura del cercle. D'altra banda, és possible dibuixar una bona aproximació en un nombre finit de passos, a conseqüència del fet que existeixen nombres racionals tan a prop de π com vulguem.
D'una manera més abstracta aquest problema també es pot entendre de la següent manera. Donats uns determinats axiomes de la geometria euclidiana referents a l'existència de línies i cercles determinen aquests axiomes l'existència d'aquest quadrat?.
El terme quadratura del cercle a vegades s'utilitzen com a sinònims per referir-se a l'aproximació per mètodes numèrics de l'àrea d'un cercle.