This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Excessive number of explanatory footnotes. Screen readers can put these at the end of the article, which is confusingly out of context. Merge into main prose or drop where content is already covered by a linked article. (May 2024) |
120-cell | |
---|---|
Type | Convex regular 4-polytope |
Schläfli symbol | {5,3,3} |
Coxeter diagram | |
Cells | 120 {5,3} |
Faces | 720 {5} |
Edges | 1200 |
Vertices | 600 |
Vertex figure | tetrahedron |
Petrie polygon | 30-gon |
Coxeter group | H4, [3,3,5] |
Dual | 600-cell |
Properties | convex, isogonal, isotoxal, isohedral |
Uniform index | 32 |
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron[1] and hecatonicosahedroid.[2]
The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices. It is the 4-dimensional analogue of the regular dodecahedron, since just as a dodecahedron has 12 pentagonal facets, with 3 around each vertex, the dodecaplex has 120 dodecahedral facets, with 3 around each edge.[a] Its dual polytope is the 600-cell.
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).