3-Fluoroamphetamine

3-Fluoroamphetamine
Ball-and-stick model of the 3-fluoroamphetamine molecule
Clinical data
Trade names3FPPA
Addiction
liability
moderate[1]
Routes of
administration
Oral
Legal status
Legal status
Pharmacokinetic data
Onset of action20 - 60 minutes
Elimination half-life90 minutes
Duration of action2 - 3 hours "3-FA". Psychonautwiki.[unreliable medical source?]
Identifiers
  • (RS)-1-(3-Fluorophenyl)propan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC9H12FN
Molar mass153.200 g·mol−1
3D model (JSmol)
Density1.0 [2] g/cm3
Boiling point208.2[2] °C (406.8 °F)
  • Fc1cccc(c1)CC(C)N
  • InChI=1S/C9H12FN/c1-7(11)5-8-3-2-4-9(10)6-8/h2-4,6-7H,5,11H2,1H3 checkY
  • Key:PIOCLGPCMNPZFT-UHFFFAOYSA-N checkY
 ☒NcheckY (what is this?)  (verify)

3-Fluoroamphetamine (3-FA; PAL-353) is a stimulant drug from the amphetamine family which acts as a monoamine releaser with similar potency to methamphetamine but more selectivity for dopamine and norepinephrine release over serotonin.[3] It is self-administered by mice to a similar extent to related drugs such as 4-fluoroamphetamine and 3-methylamphetamine.[4]

3-Fluoroamphetamine often found its use as a designer drug in several studies to mimic the effects of illegal amphetamines.[5] It has also appeared on the drug market for recreational use as an amphetamine alternative, its has been reported in January 2009 to the European Early Warning System by Belgium. Little is known about the exact history of this compound.[6]

  1. ^ Cite error: The named reference Puri_2017 was invoked but never defined (see the help page).
  2. ^ a b "3-Fluoroamphetamine | C9H12FN". Chemspider. 2022.
  3. ^ Negus SS, Mello NK, Blough BE, Baumann MH, Rothman RB (February 2007). "Monoamine releasers with varying selectivity for dopamine/norepinephrine versus serotonin release as candidate "agonist" medications for cocaine dependence: studies in assays of cocaine discrimination and cocaine self-administration in rhesus monkeys". The Journal of Pharmacology and Experimental Therapeutics. 320 (2): 627–36. doi:10.1124/jpet.106.107383. PMID 17071819. S2CID 8326027.
  4. ^ Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–54. doi:10.1124/jpet.104.080101. PMID 15677348. S2CID 12135483.
  5. ^ Seibert E, Mader E, Schmid MG (November 2021). "A simple and isocratic protein-based high performance liquid chromatography method for the enantioseparation of amphetamine derivatives". Journal of Chromatography Open. 1: 100013. doi:10.1016/j.jcoa.2021.100013. ISSN 2772-3917.
  6. ^ "GLOBAL SMART UPDATE 2009 Volume 2" (PDF). www.unodc.org. United Nations Office on Drugs and Crime. October 1, 2009.