3-Hydroxypropionate/4-hydroxybutyrate cycle

The 3-Hydroxypropionate/4-hydroxybutyrate cycle, also known as the 3HP/4HB cycle, is a specialized carbon fixation process used by some archaea, including Thermoproteota.[1] For these organisms to survive and grow autotrophically in hostile settings, such as hydrothermal vents, this cycle is essential.[2] Carbon dioxide (CO2) is effectively transformed by the process into organic chemicals like acetyl-CoA, which can then be utilized for growth and energy production.[3] This route is specific to organisms that fix CO2 in high-temperature, low-oxygen settings, in contrast to the more well-known Calvin cycle which does not perform as well at fixing CO2 under these conditions.[2]

  1. ^ Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.; Lian, Hong; Lipscomb, Gina L.; Schut, Gerrit J.; Keller, Matthew W.; Adams, Michael W. W.; Kelly, Robert M. (2016-11-01). "Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea". Metabolic Engineering. 38: 446–463. doi:10.1016/j.ymben.2016.10.009. ISSN 1096-7176. PMC 5433351. PMID 27771364.
  2. ^ a b Minic, Zoran; Thongbam, Premila D. (2011-04-28). "The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes". Marine Drugs. 9 (5): 719–738. doi:10.3390/md9050719. ISSN 1660-3397. PMC 3111178. PMID 21673885.
  3. ^ Nisar, Ayesha; Khan, Sawar; Hameed, Muddassar; Nisar, Alisha; Ahmad, Habib; Mehmood, Sardar Azhar (2021-10-01). "Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering". Microbiological Research. 251: 126813. doi:10.1016/j.micres.2021.126813. ISSN 0944-5013. PMID 34274880.