600-cell

600-cell
Schlegel diagram, vertex-centered
(vertices and edges)
TypeConvex regular 4-polytope
Schläfli symbol{3,3,5}
Coxeter diagram
Cells600 ({3,3})
Faces1200 {3}
Edges720
Vertices120
Vertex figure
icosahedron
Petrie polygon30-gon
Coxeter groupH4, [3,3,5], order 14400
Dual120-cell
Propertiesconvex, isogonal, isotoxal, isohedral
Uniform index35
Net

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron[1] and hexacosihedroid.[2] It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

The 600-cell's boundary is composed of 600 tetrahedral cells with 20 meeting at each vertex. Together they form 1200 triangular faces, 720 edges, and 120 vertices. It is the 4-dimensional analogue of the icosahedron, since it has five tetrahedra meeting at every edge, just as the icosahedron has five triangles meeting at every vertex. Its dual polytope is the 120-cell.

  1. ^ N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite Symmetry Groups, 11.5 Spherical Coxeter groups, p.249
  2. ^ Matila Ghyka, The Geometry of Art and Life (1977), p.68