8-cube

8-cube
Octeract

Orthogonal projection
inside Petrie polygon
Type Regular 8-polytope
Family hypercube
Schläfli symbol {4,36}
Coxeter-Dynkin diagrams







7-faces 16 {4,35}
6-faces 112 {4,34}
5-faces 448 {4,33}
4-faces 1120 {4,32}
Cells 1792 {4,3}
Faces 1792 {4}
Edges 1024
Vertices 256
Vertex figure 7-simplex
Petrie polygon hexadecagon
Coxeter group C8, [36,4]
Dual 8-orthoplex
Properties convex, Hanner polytope

In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.

It is represented by Schläfli symbol {4,36}, being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the 4-cube) and oct for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes.