8-orthoplex

8-orthoplex
Octacross

Orthogonal projection
inside Petrie polygon
Type Regular 8-polytope
Family orthoplex
Schläfli symbol {36,4}
{3,3,3,3,3,31,1}
Coxeter-Dynkin diagrams
7-faces 256 {36}
6-faces 1024 {35}
5-faces 1792 {34}
4-faces 1792 {33}
Cells 1120 {3,3}
Faces 448 {3}
Edges 112
Vertices 16
Vertex figure 7-orthoplex
Petrie polygon hexadecagon
Coxeter groups C8, [36,4]
D8, [35,1,1]
Dual 8-cube
Properties convex, Hanner polytope

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

It has two constructive forms, the first being regular with Schläfli symbol {36,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,3,31,1} or Coxeter symbol 511.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is an 8-hypercube, or octeract.