9-cube

9-cube
Enneract

Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, yellow have 4, and the green center has 8
Type Regular 9-polytope
Family hypercube
Schläfli symbol {4,37}
Coxeter-Dynkin diagram
8-faces 18 {4,36}
7-faces 144 {4,35}
6-faces 672 {4,34}
5-faces 2016 {4,33}
4-faces 4032 {4,3,3}
Cells 5376 {4,3}
Faces 4608 {4}
Edges 2304
Vertices 512
Vertex figure 8-simplex
Petrie polygon octadecagon
Coxeter group C9, [37,4]
Dual 9-orthoplex
Properties convex, Hanner polytope

In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

It can be named by its Schläfli symbol {4,37}, being composed of three 8-cubes around each 7-face. It is also called an enneract, a portmanteau of tesseract (the 4-cube) and enne for nine (dimensions) in Greek. It can also be called a regular octadeca-9-tope or octadecayotton, as a nine-dimensional polytope constructed with 18 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a 9-cube can be called a 9-orthoplex, and is a part of the infinite family of cross-polytopes.