ANAIS-112

ANAIS-112 experiment
Legal statusTaking data since 03-08-2017
PurposeTesting the positive annual modulation signal reported by DAMA/LIBRA
HeadquartersCanfranc Underground Laboratory, Spain
FieldsDark Matter search, Astroparticle Physics
Websitehttps://gifna.unizar.es/anais/

ANAIS (Annual modulation with NaI Scintillators) is a dark matter direct detection experiment located at the Canfranc Underground Laboratory (LSC), in Spain, operated by a team of researchers of the CAPA at the University of Zaragoza.

ANAIS' goal is to confirm or refute in a model independent way the DAMA/LIBRA[1][2][3] experiment positive result: an annual modulation in the low-energy detection rate having all the features expected for the signal induced by weakly interacting dark matter particles (WIMPs) in a standard galactic halo. This modulation is produced as a result of the Earth rotation around the Sun. A modulation with all the characteristic of a Dark Matter (DM) signal has been observed for about 20 years by DAMA/LIBRA, but it is in strong tension with the negative results of other DM direct detection experiments.[4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19] Compatibility among the different experimental results in most conventional WIMP-DM scenarios is actually disfavored,[20][21] but it is strongly dependent on the DM particle and halo models considered. A comparison using the same target material, NaI(Tl), is more direct and almost model-independent.

  1. ^ Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C. J.; d'Angelo, A.; Di Marco, A. (1 September 2020). "The DAMA project: Achievements, implications and perspectives". Progress in Particle and Nuclear Physics. 114: 103810. Bibcode:2020PrPNP.11403810B. doi:10.1016/j.ppnp.2020.103810. ISSN 0146-6410. S2CID 225281419. Retrieved 19 April 2022.
  2. ^ Bernabei, R.; Belli, P.; Caracciolo, V.; Cerulli, R.; Merlo, V.; Cappella, F.; d'Angelo, A.; Incicchitti, A.; Dai, C. J. (10 October 2021). "The dark matter: DAMA/LIBRA and its perspectives". arXiv:2110.04734 [astro-ph, physics:hep-ex, physics:hep-ph, physics:physics]. arXiv:2110.04734.
  3. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  4. ^ PandaX-II Collaboration; Cui, Xiangyi; Abdukerim, Abdusalam; Chen, Wei; Chen, Xun; Chen, Yunhua; Dong, Binbin; Fang, Deqing; Fu, Changbo (30 October 2017). "Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment". Physical Review Letters. 119 (18): 181302. arXiv:1708.06917. Bibcode:2017PhRvL.119r1302C. doi:10.1103/PhysRevLett.119.181302. PMID 29219592. S2CID 29716579. Retrieved 19 April 2022.
  5. ^ PandaX-4T Collaboration; Meng, Yue; Wang, Zhou; Tao, Yi; Abdukerim, Abdusalam; Bo, Zihao; Chen, Wei; Chen, Xun; Chen, Yunhua (23 December 2021). "Dark Matter Search Results from the PandaX-4T Commissioning Run". Physical Review Letters. 127 (26): 261802. arXiv:2107.13438. Bibcode:2021PhRvL.127z1802M. doi:10.1103/PhysRevLett.127.261802. PMID 35029500. S2CID 236469421. Retrieved 19 April 2022.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  6. ^ XENON Collaboration; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Antochi, V. C.; Angelino, E. (17 December 2019). "Light Dark Matter Search with Ionization Signals in XENON1T". Physical Review Letters. 123 (25): 251801. arXiv:1907.11485. Bibcode:2019PhRvL.123y1801A. doi:10.1103/PhysRevLett.123.251801. PMID 31922764. S2CID 198953427. Retrieved 19 April 2022.
  7. ^ XENON Collaboration 7; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F. (12 September 2018). "Dark Matter Search Results from a One Ton-Year Exposure of XENON1T". Physical Review Letters. 121 (11): 111302. arXiv:1805.12562. Bibcode:2018PhRvL.121k1302A. doi:10.1103/PhysRevLett.121.111302. hdl:11245.1/4e39d67c-7ddb-4254-aa30-ab2430abc279. PMID 30265108. S2CID 51681150. Retrieved 19 April 2022.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  8. ^ LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P. (11 January 2017). "Results from a Search for Dark Matter in the Complete LUX Exposure". Physical Review Letters. 118 (2): 021303. arXiv:1608.07648. Bibcode:2017PhRvL.118b1303A. doi:10.1103/PhysRevLett.118.021303. hdl:10044/1/45091. PMID 28128598. S2CID 206284055. Retrieved 19 April 2022.
  9. ^ DEAP Collaboration; Ajaj, R.; Amaudruz, P.-A.; Araujo, G. R.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C. E.; Bonatt, J. (24 July 2019). "Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Physical Review D. 100 (2): 022004. arXiv:1902.04048. Bibcode:2019PhRvD.100b2004A. doi:10.1103/PhysRevD.100.022004. S2CID 119342085. Retrieved 19 April 2022.
  10. ^ DarkSide Collaboration; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Araujo, G. R.; Asner, D. M.; Ave, M.; Back, H. O. (23 August 2018). "Low-Mass Dark Matter Search with the DarkSide-50 Experiment". Physical Review Letters. 121 (8): 081307. arXiv:1802.06994. Bibcode:2018PhRvL.121h1307A. doi:10.1103/PhysRevLett.121.081307. hdl:2434/631601. PMID 30192596. S2CID 52173907. Retrieved 19 April 2022.
  11. ^ SuperCDMS Collaboration; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Beaty, J.; Billard, J. (20 June 2014). "Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS". Physical Review Letters. 112 (24): 241302. arXiv:1402.7137. Bibcode:2014PhRvL.112x1302A. doi:10.1103/PhysRevLett.112.241302. hdl:1721.1/88645. PMID 24996080. S2CID 119066853. Retrieved 19 April 2022.
  12. ^ SuperCDMS Collaboration; Agnese, R.; Aralis, T.; Aramaki, T.; Arnquist, I. J.; Azadbakht, E.; Baker, W.; Banik, S.; Barker, D. (15 March 2019). "Search for low-mass dark matter with CDMSlite using a profile likelihood fit". Physical Review D. 99 (6): 062001. arXiv:1808.09098. Bibcode:2019PhRvD..99f2001A. doi:10.1103/PhysRevD.99.062001. S2CID 119215767. Retrieved 19 April 2022.
  13. ^ EDELWEISS Collaboration; Armengaud, E.; Augier, C.; Benoît, A.; Benoit, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P. (17 April 2019). "Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground". Physical Review D. 99 (8): 082003. arXiv:1901.03588. Bibcode:2019PhRvD..99h2003A. doi:10.1103/PhysRevD.99.082003. S2CID 91184022. Retrieved 19 April 2022.
  14. ^ CRESST Collaboration; Abdelhameed, A. H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D'Addabbo, A. (25 November 2019). "First results from the CRESST-III low-mass dark matter program". Physical Review D. 100 (10): 102002. arXiv:1904.00498. Bibcode:2019PhRvD.100j2002A. doi:10.1103/PhysRevD.100.102002. S2CID 90261775. Retrieved 19 April 2022.
  15. ^ Adhikari, Govinda; Souza, E. Barbosa de; Carlin, N.; Choi, J.J.; Choi, S.; Djamal, M.; Ezeribe, Anthony C.; Franca, L.E.; Ha, C.; Hahn, I.S.; Jeon, E.J. (23 April 2021). "Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target". arXiv:2104.03537. doi:10.21203/rs.3.rs-429107/v1. S2CID 233181853. {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ XENON Collaboration; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P. (6 March 2017). "Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data". Physical Review Letters. 118 (10): 101101. Bibcode:2017PhRvL.118j1101A. doi:10.1103/PhysRevLett.118.101101. hdl:10316/80088. PMID 28339273. S2CID 206287497. Retrieved 19 April 2022.
  17. ^ LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A. (27 September 2018). "Search for annual and diurnal rate modulations in the LUX experiment". Physical Review D. 98 (6): 062005. arXiv:1807.07113. Bibcode:2018PhRvD..98f2005A. doi:10.1103/PhysRevD.98.062005. hdl:10400.26/27687. S2CID 51805286. Retrieved 19 April 2022.
  18. ^ CDEX Collaboration; Yang, L. T.; Li, H. B.; Yue, Q.; Ma, H.; Kang, K. J.; Li, Y. J.; Wong, H. T.; Agartioglu, M. (25 November 2019). "Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory". Physical Review Letters. 123 (22): 221301. arXiv:1904.12889. Bibcode:2019PhRvL.123v1301Y. doi:10.1103/PhysRevLett.123.221301. PMID 31868422. S2CID 140212171. Retrieved 19 April 2022.
  19. ^ Sarsa, M.L (December 1995). Experimento Para la Detección Directa de Materia Oscura Galáctica fría con Detectores de Centelleo Mediante la búsqueda de Señales Distintivas. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain.{{cite book}}: CS1 maint: location missing publisher (link)
  20. ^ Baum, Sebastian; Freese, Katherine; Kelso, Chris (10 February 2019). "Dark Matter implications of DAMA/LIBRA-phase2 results". Physics Letters B. 789: 262–269. arXiv:1804.01231. Bibcode:2019PhLB..789..262B. doi:10.1016/j.physletb.2018.12.036. ISSN 0370-2693. S2CID 119398561. Retrieved 20 April 2022.
  21. ^ Kang, Sunghyun; Scopel, Stefano; Tomar, Gaurav; Yoon, Jong-Hyun (6 July 2018). "DAMA/LIBRA-phase2 in WIMP effective models". Journal of Cosmology and Astroparticle Physics. 2018 (7): 016. arXiv:1804.07528. Bibcode:2018JCAP...07..016K. doi:10.1088/1475-7516/2018/07/016. ISSN 1475-7516. S2CID 119100672. Retrieved 20 April 2022.