Accumulation point

In mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence in a topological space is a point such that, for every neighbourhood of there are infinitely many natural numbers such that This definition of a cluster or accumulation point of a sequence generalizes to nets and filters.

The similarly named notion of a limit point of a sequence[1] (respectively, a limit point of a filter,[2] a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synonymous with "cluster/accumulation point of a set", this is not true for sequences (nor nets or filters). That is, the term "limit point of a sequence" is not synonymous with "cluster/accumulation point of a sequence".

The limit points of a set should not be confused with adherent points (also called points of closure) for which every neighbourhood of contains some point of . Unlike for limit points, an adherent point of may have a neighbourhood not containing points other than itself. A limit point can be characterized as an adherent point that is not an isolated point.

Limit points of a set should also not be confused with boundary points. For example, is a boundary point (but not a limit point) of the set in with standard topology. However, is a limit point (though not a boundary point) of interval in with standard topology (for a less trivial example of a limit point, see the first caption).[3][4][5]

This concept profitably generalizes the notion of a limit and is the underpinning of concepts such as closed set and topological closure. Indeed, a set is closed if and only if it contains all of its limit points, and the topological closure operation can be thought of as an operation that enriches a set by uniting it with its limit points.

With respect to the usual Euclidean topology, the sequence of rational numbers has no limit (i.e. does not converge), but has two accumulation points (which are considered limit points here), viz. -1 and +1. Thus, thinking of sets, these points are limit points of the set
  1. ^ Dugundji 1966, pp. 209–210.
  2. ^ Bourbaki 1989, pp. 68–83.
  3. ^ "Difference between boundary point & limit point". 2021-01-13.
  4. ^ "What is a limit point". 2021-01-13.
  5. ^ "Examples of Accumulation Points". 2021-01-13. Archived from the original on 2021-04-21. Retrieved 2021-01-14.