Advanced Electric Propulsion System

The Advanced Electric Propulsion System qualification thruster inside one of the vacuum chambers at NASA Glenn’s Electric Propulsion and Power Laboratory.

Advanced Electric Propulsion System (AEPS) is a solar electric propulsion system for spacecraft that is being designed, developed and tested by NASA and Aerojet Rocketdyne for large-scale science missions and cargo transportation.[1] The first application of the AEPS is to propel the Power and Propulsion Element (PPE) of the Lunar Gateway,[1] to be launched no earlier than 2027.[2] The PPE module is built by Maxar Space Systems in Palo Alto, California. Two identical AEPS engines would consume 25 kW being generated by the roll-out solar array (ROSA) assembly, which can produce over 60 kW of power.[1]

The Power and Propulsion Element (PPE) for the Lunar Gateway will have a mass of 8-9 metric tons and will be capable of generating 50 kW[3] of solar electric power for its Hall-effect thrusters for maneuverability, which can be supported by chemical monopropellant thrusters for high-thrust attitude control maneuvers.[4]

  1. ^ a b c Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS). (PDF). Daniel A. Herman, Todd A. Tofil, Walter Santiago, Hani Kamhawi, James E. Polk, John S. Snyder, Richard R. Hofer, Frank Q. Picha, Jerry Jackson and May Allen. NASA; NASA/TM—2018-219761. 35th International Electric Propulsion Conference. Atlanta, Georgia, October 8–12, 2017. Accessed: 27 July 2018.
  2. ^ "Artemis Programs: NASA Should Document and Communicate Plans to Address Gateway's Mass Risk". GAO. July 31, 2024. Retrieved August 1, 2024.
  3. ^ NASA issues study contracts for Deep Space Gateway element. Jeff Foust, Space News. 3 November 2017.
  4. ^ Chris Gebhardt (April 6, 2017). "NASA finally sets goals, missions for SLS – eyes multi-step plan to Mars". NASA Spaceflight. Retrieved April 9, 2017.