Alex K. Zettl (born Oct. 11, 1956) is an American experimental physicist, educator, and inventor.
He is a professor of the Graduate School in Physics at the University of California, Berkeley, and a Senior Scientist at the Lawrence Berkeley National Laboratory. Zettl is a leading expert in the synthesis, characterization, and application of low dimensional materials. He has synthesized and studied new materials, notably those based on carbon, boron and nitrogen, and has made numerous inventions in the field of electronic materials and nano-electromechanical systems. Zettl and his research team were the first to synthesize boron nitride nanotubes,[1] and created carbon nanotube chemical sensors.[2] He and his team built the world's smallest synthetic electrically powered rotational nanomotor,[3] the smallest fully integrated FM radio receiver,[4][5] a nanomechanical mass balance with single-atom sensitivity,[6] voltage-controllable nanoscale relaxation oscillators,[7][8] and a nanoscale thermal rectifier[9] useful for phononic circuitry He and his team invented the nanomanipulator,[10][11] suspended graphene grid,[12][13] and the graphene liquid cell[14] and graphene flow cell,[15] all of which have greatly advanced transmission electron microscopy.
^Chopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (18 August 1995). "Boron Nitride Nanotubes". Science. 269 (5226): 966–967. doi:10.1126/science.269.5226.966. PMID17807732. S2CID28988094.
^Collins, Philip G.; Bradley, Keith; Ishigami, Masa; Zettl, A. (10 March 2000). "Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes". Science. 287 (5459): 1801–1804. doi:10.1126/science.287.5459.1801. PMID10710305.
^Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (July 2003). "Rotational actuators based on carbon nanotubes". Nature. 424 (6947): 408–410. doi:10.1038/nature01823. PMID12879064. S2CID2200106.
^Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. (1 November 2007). "Nanotube Radio". Nano Letters. 7 (11): 3508–3511. doi:10.1021/nl0721113. PMID17973438.
^Cumings, John; Collins, Philip G.; Zettl, A. (August 2000). "Peeling and sharpening multiwall nanotubes". Nature. 406 (6796): 586. doi:10.1038/35020698. PMID10949291. S2CID33223709.
^Cumings, John; Zettl, A. (28 July 2000). "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes". Science. 289 (5479): 602–604. doi:10.1126/science.289.5479.602. PMID10915618.
^Meyer, Jannik C.; Kisielowski, C.; Erni, R.; Rossell, Marta D.; Crommie, M. F.; Zettl, A. (12 November 2008). "Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes". Nano Letters. 8 (11): 3582–3586. doi:10.1021/nl801386m. PMID18563938.
^Girit, Çağlar Ö.; Meyer, Jannik C.; Erni, Rolf; Rossell, Marta D.; Kisielowski, C.; Yang, Li; Park, Cheol-Hwan; Crommie, M. F.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (27 March 2009). "Graphene at the Edge: Stability and Dynamics". Science. 323 (5922): 1705–1708. doi:10.1126/science.1166999. PMID19325110. S2CID24762146.
^Yuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Daniel J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, A. Paul (6 April 2012). "High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells". Science. 336 (6077): 61–64. doi:10.1126/science.1217654. PMID22491849. S2CID12984064.
^Dunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Belling, Jason N.; LaFrance, Ben; Jackson, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex (25 August 2020). "Graphene-Sealed Flow Cells for In Situ Transmission Electron Microscopy of Liquid Samples". ACS Nano. 14 (8): 9637–9643. doi:10.1021/acsnano.0c00431. PMID32806056. S2CID221164696.