Uniform apeirogonal antiprism | |
---|---|
Type | Semiregular tiling |
Vertex configuration | 3.3.3.∞ |
Schläfli symbol | sr{2,∞} or |
Wythoff symbol | | 2 2 ∞ |
Coxeter diagram | |
Symmetry | [∞,2+], (∞22) |
Rotation symmetry | [∞,2]+, (∞22) |
Bowers acronym | Azap |
Dual | Apeirogonal deltohedron |
Properties | Vertex-transitive |
In geometry, an apeirogonal antiprism or infinite antiprism[1] is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane.
If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes.