Applied mechanics

Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments.[1] In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics. It is this stark difference that makes applied mechanics an essential understanding for practical everyday life.[2] It has numerous applications in a wide variety of fields and disciplines, including but not limited to structural engineering, astronomy, oceanography, meteorology, hydraulics, mechanical engineering, aerospace engineering, nanotechnology, structural design, earthquake engineering, fluid dynamics, planetary sciences, and other life sciences.[3][4] Connecting research between numerous disciplines, applied mechanics plays an important role in both science and engineering.[1]

Pure mechanics describes the response of bodies (solids and fluids) or systems of bodies to external behavior of a body, in either a beginning state of rest or of motion, subjected to the action of forces. Applied mechanics bridges the gap between physical theory and its application to technology.

Composed of two main categories, Applied Mechanics can be split into classical mechanics; the study of the mechanics of macroscopic solids, and fluid mechanics; the study of the mechanics of macroscopic fluids.[4] Each branch of applied mechanics contains subcategories formed through their own subsections as well.[4] Classical mechanics, divided into statics and dynamics, are even further subdivided, with statics' studies split into rigid bodies and rigid structures, and dynamics' studies split into kinematics and kinetics.[4] Like classical mechanics, fluid mechanics is also divided into two sections: statics and dynamics.[4]

Within the practical sciences, applied mechanics is useful in formulating new ideas and theories, discovering and interpreting phenomena, and developing experimental and computational tools.[5] In the application of the natural sciences, mechanics was said to be complemented by thermodynamics, the study of heat and more generally energy, and electromechanics, the study of electricity and magnetism.

  1. ^ a b Pao, Yih-Hsing (1998-02-01). "Applied Mechanics in Science and Engineering". Applied Mechanics Reviews. 51 (2): 141–153. Bibcode:1998ApMRv..51..141P. doi:10.1115/1.3098993. ISSN 0003-6900.
  2. ^ Drabble, George E. (1971-01-01), Drabble, George E. (ed.), "CHAPTER ONE - INTRODUCTION", Applied Mechanics, Academic Press, pp. 1–8, ISBN 978-0-491-00208-0, retrieved 2021-11-06
  3. ^ Eberhard, Peter; Juhasz, Stephen, eds. (2016). IUTAM. doi:10.1007/978-3-319-31063-3. ISBN 978-3-319-31061-9.
  4. ^ a b c d e Abdel Wahab, Magd (March 2020). "Editorial". Applied Mechanics. 1 (1): 1–2. doi:10.3390/applmech1010001. hdl:1854/LU-8634459.
  5. ^ Kurrer, Karl-Eugen (2008-04-23). The History of the Theory of Structures: From Arch Analysis to Computational Mechanics (1 ed.). Wiley. doi:10.1002/9783433600160. ISBN 978-3-433-01838-5.