Archer's paradox

Arrow direction when braced and when at full draw. A = bow riser/grip, B = median plane of the bow, C = arrow aiming line and trajectory
Arrow flexing both towards and away from the bow handle.

The archer's paradox is the phenomenon of an arrow traveling in the direction it is pointed at full draw, when it seems that the arrow would have to pass through the starting position it was in before being drawn, where it was pointed to the side of the target.

The bending of the arrow when released is the explanation for why the paradox occurs and should not be confused with the paradox itself.

Flexing of the arrow when shot from a modern 'centre shot' bow is still present and is caused by a variety of factors, mainly the way the string is deflected from the fingers as the arrow is released.

The term was first used by E. J. Rendtroff in 1913,[1] but detailed descriptions of the phenomenon appear in archery literature as early as Horace A. Ford's 1859 text "Archery: Its Theory and Practice". As understanding was gained about the arrow flexing around and out of the way of the bow as it is shot (as first filmed by Clarence Hickman)[2][3] and then experiencing oscillating back-and-forth bending as it travels toward the target,[4] this dynamic flexing has incorrectly become a common usage of the term. This misuse sometimes causes misunderstanding on the part of those only familiar with modern target bows, which often have risers with an eccentrically cutout "arrow window"; being "centre shot", these bows do not exhibit any paradoxical behaviour as the arrow is always pointing visually along its line of flight.[5][6][7]

  1. ^ "The Toxophilist's Paradox". Forest and Stream. 8 February 1913.
  2. ^ Rheingans, W. R. (March–April 1936). "Exterior and Interior Ballistics of Bows and Arrows - Review". Archery Review: 236 ff.
  3. ^ Rheingans, W. R.; Nagler, F. (June–August 1937). "Spine and Arrow Design". American Bowman Review: 226–232.
  4. ^ Park, James L. (8 September 2013) [9 November 2012]. "Arrow behaviour in the lateral plane during and immediately following the power stroke of a recurve archery bow". Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. 227 (3): 172–183. doi:10.1177/1754337112464844. S2CID 111439189.
  5. ^ Kooi, B. W.; Sparenberg, J. A. (1997). "On the Mechanics of the Arrow: Archer's Paradox" (PDF). Journal of Engineering Mathematics. 31 (4): 285–306. Bibcode:1997JEnMa..31..285K. doi:10.1023/A:1004262424363. S2CID 122605918. Retrieved 13 February 2013.
  6. ^ Kooi, B. W. (1998). "The Archer's Paradox and Modelling, a Review" (PDF). In Hollister-Short, Graham (ed.). History of Technology. Vol. 20. pp. 125–137. ISBN 9780720123760.
  7. ^ Kooi, B. W. (1998). "Bow-arrow interaction in archery" (PDF). Journal of Sports Sciences. 16 (8): 721–731. doi:10.1080/026404198366353. PMID 10189077. Retrieved 13 February 2013.