In the ADM formulation of general relativity, spacetime is split into spatial slices and a time axis. The basic variables are taken to be the induced metric on the spatial slice and the metric's conjugate momentum , which is related to the extrinsic curvature and is a measure of how the induced metric evolves in time.[1] These are the metric canonical coordinates.
In 1986 Abhay Ashtekar introduced a new set of canonical variables, Ashtekar (new) variables to represent an unusual way of rewriting the metric canonical variables on the three-dimensional spatial slices in terms of an SU(2) gauge field and its complementary variable.[2]