Associated prime

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M (word play between the notation and the fact that an associated prime is an annihilator).[1]

In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings. Specifically, if an ideal J is decomposed as a finite intersection of primary ideals, the radicals of these primary ideals are prime ideals, and this set of prime ideals coincides with [2] Also linked with the concept of "associated primes" of the ideal are the notions of isolated primes and embedded primes.

  1. ^ Picavet, Gabriel (1985). "Propriétés et applications de la notion de contenu". Communications in Algebra. 13 (10): 2231–2265. doi:10.1080/00927878508823275.
  2. ^ Lam 1999, p. 117, Ex 40B.