Part of a series on |
Machine learning and data mining |
---|
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction, to generate lower-dimensional embeddings for subsequent use by other machine learning algorithms.[1]
Variants exist which aim to make the learned representations assume useful properties.[2] Examples are regularized autoencoders (sparse, denoising and contractive autoencoders), which are effective in learning representations for subsequent classification tasks,[3] and variational autoencoders, which can be used as generative models.[4] Autoencoders are applied to many problems, including facial recognition,[5] feature detection,[6] anomaly detection, and learning the meaning of words.[7][8] In terms of data synthesis, autoencoders can also be used to randomly generate new data that is similar to the input (training) data.[6]
:0
was invoked but never defined (see the help page).:4
was invoked but never defined (see the help page).