Barkhausen effect

Replica of Barkhausen's original apparatus, consisting of an iron bar with a coil of wire around it (center) with the coil connected through a vacuum tube amplifier (left) to an earphone (not shown). When the horseshoe magnet (right) is rotated, the magnetic field through the iron changes from one direction to the other, and the crackling Barkhausen noise is heard in the earphone.
Magnetization (J) or flux density (B) curve as a function of magnetic field intensity (H) in ferromagnetic material. The inset shows Barkhausen jumps.
Origin of the Barkhausen noise: as a domain wall moves it gets caught on a defect in the crystal lattice, then "snaps" past it, creating a sudden change in the magnetic field.

The Barkhausen effect is a name given to the noise in the magnetic output of a ferromagnet when the magnetizing force applied to it is changed. Discovered by German physicist Heinrich Barkhausen in 1919, it is caused by rapid changes in the size of magnetic domains (similarly magnetically oriented atoms in ferromagnetic materials).

Barkhausen's work in acoustics and magnetism led to the discovery, which became the main piece of experimental evidence supporting the domain theory of ferromagnetism proposed in 1906 by Pierre-Ernest Weiss. The Barkhausen effect is a series of sudden changes in the size and orientation of ferromagnetic domains, or microscopic clusters of aligned atomic magnets (spins), that occur during a continuous process of magnetization or demagnetization. The Barkhausen effect offered direct evidence for the existence of ferromagnetic domains, which previously had been postulated theoretically. Heinrich Barkhausen discovered that a slow, smooth increase of a magnetic field applied to a piece of ferromagnetic material, such as iron, causes it to become magnetized, not continuously but in minute steps.