Big Rip

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.

According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time (hence the exponential law – the expansion of a local volume is the same number of times over the same time interval), and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time. According to recent studies, the universe is currently set for a constant expansion and heat death,[1] because w = -1.

The possibility of sudden rip singularity occurs only for hypothetical matter (phantom energy) with implausible physical properties.[2]

  1. ^ Sutter, Paul (2024-02-26). "What is the big rip, and can we stop it?". Space.com. Retrieved 2024-09-11.
  2. ^ Ellis, George F. R.; Maartens, Roy & MacCallum, Malcolm A. H. (2012). Relativistic Cosmology. Cambridge, UK: Cambridge University Press. pp. 146–147. ISBN 978-0-52138-115-4.