Bioenergy

A CHP power station using wood to supply 30,000 households in France with bioenergy as a renewable energy source
Sugarcane plantation to produce ethanol for bioenergy production in Brazil

Bioenergy is a type of renewable energy that is derived from plants and animal waste.[1] The biomass that is used as input materials consists of recently living (but now dead) organisms, mainly plants.[2] Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.[3]

Bioenergy can help with climate change mitigation but in some cases the required biomass production can increase greenhouse gas emissions or lead to local biodiversity loss. The environmental impacts of biomass production can be problematic, depending on how the biomass is produced and harvested.

The IEA's Net Zero by 2050 scenario calls for traditional bioenergy to be phased out by 2030, with modern bioenergy's share increasing from 6.6% in 2020 to 13.1% in 2030 and 18.7% in 2050.[4] Bioenergy has a significant climate change mitigation potential if implemented correctly.[5]: 637  Most of the recommended pathways to limit global warming include substantial contributions from bioenergy in 2050 (average at 200 EJ).[6]: B 7.4 

  1. ^ "Renewable Energy Sources and Climate Change Mitigation. Special Report of the Intergovernmental Panel on Climate Change" (PDF). IPCC. 2012. Archived (PDF) from the original on 2019-04-12. Retrieved 9 March 2024.
  2. ^ "Bioenergy Basics". Energy.gov. Retrieved 2023-05-25.
  3. ^ "Biomass – Energy Explained, Your Guide To Understanding Energy". U.S. Energy Information Administration. June 21, 2018.
  4. ^ "What does net-zero emissions by 2050 mean for bioenergy and land use? – Analysis". IEA. Retrieved 2023-01-19.
  5. ^ Smith, P., J. Nkem, K. Calvin, D. Campbell, F. Cherubini, G. Grassi, V. Korotkov, A.L. Hoang, S. Lwasa, P. McElwee, E. Nkonya, N. Saigusa, J.-F. Soussana, M.A. Taboada, 2019: Chapter 6: Interlinkages Between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-offs and Integrated Response Options. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Portner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.
  6. ^ IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. https://doi.org/10.1017/9781009157988.001