Bismuth polycations

Structure of the Bi2+
8
cluster in [Bi8](GaCl4)2. The Bi–Bi bond lengths are 3.07 Å.[1]

Bismuth polycations are polyatomic ions of the formula Bin+
x
. They were originally observed in solutions of bismuth metal in molten bismuth chloride.[2] It has since been found that these clusters are present in the solid state, particularly in salts where germanium tetrachloride or tetrachloroaluminate serve as the counteranions, but also in amorphous phases such as glasses and gels.[3][4][5][6][7] Bismuth endows materials with a variety of interesting optical properties that can be tuned by changing the supporting material.[8][9][10][11] Commonly-reported structures include the trigonal bipyramidal Bi3+
5
cluster, the octahedral Bi2+
6
cluster, the square antiprismatic Bi2+
8
cluster, and the tricapped trigonal prismatic Bi5+
9
cluster.

  1. ^ Cite error: The named reference :2 was invoked but never defined (see the help page).
  2. ^ Day, Graeme; Glaser, Rainer; Shimomura, Noriyuki; Takamuku, Atsushi; Ichikawa, Kazuhiko (2000-03-17). "Electronic Excitations in Homopolyatomic Bismuth Cations: Spectroscopic Measurements in Molten Salts and an ab initio CI-Singles Study". Chemistry – A European Journal. 6 (6): 1078–1086. doi:10.1002/(sici)1521-3765(20000317)6:6<1078::aid-chem1078>3.0.co;2-r. ISSN 1521-3765. PMID 10785828.
  3. ^ Fujimoto, Yasushi; Nakatsuka, Masahiro (March 2001). "Infrared Luminescence from Bismuth-Doped Silica Glass". Japanese Journal of Applied Physics. 40 (Part 2, No. 3B): L279–L281. Bibcode:2001JaJAP..40L.279F. doi:10.1143/jjap.40.l279. ISSN 1347-4065. S2CID 250811099.
  4. ^ Dianov, Evgenii M.; Dvoyrin, V. V.; Mashinsky, V. M.; Umnikov, A. A.; Yashkov, M. V.; Gur'yanov, A. N. (2005). "CW bismuth fibre laser". Quantum Electronics. 35 (12): 1083–1084. Bibcode:2005QuEle..35.1083D. doi:10.1070/qe2005v035n12abeh013092. S2CID 250774487.
  5. ^ Zhou, Shifeng; Jiang, Nan; Zhu, Bin; Yang, Hucheng; Ye, Song; Lakshminarayana, Gandham; Hao, Jianhua; Qiu, Jianrong (2008-05-09). "Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers". Advanced Functional Materials. 18 (9): 1407–1413. doi:10.1002/adfm.200701290. hdl:10397/21390. ISSN 1616-3028. S2CID 136501137.
  6. ^ Razdobreev, Igor; El Hamzaoui, Hicham; Bouwmans, Géraud; Bouazaoui, Mohamed; Arion, Vladimir B. (2012-02-01). "Photoluminescence of sol-gel silica fiber preform doped with Bismuth-containing heterotrinuclear complex". Optical Materials Express. 2 (2): 205–213. Bibcode:2012OMExp...2..205R. doi:10.1364/ome.2.000205. ISSN 2159-3930.
  7. ^ Sun, Hong-Tao; Yang, Junjie; Fujii, Minoru; Sakka, Yoshio; Zhu, Yufang; Asahara, Takayuki; Shirahata, Naoto; Ii, Masaaki; Bai, Zhenhua (2011-01-17). "Highly Fluorescent Silica-Coated Bismuth-Doped Aluminosilicate Nanoparticles for Near-Infrared Bioimaging". Small. 7 (2): 199–203. doi:10.1002/smll.201001011. ISSN 1613-6829. PMID 21213381.
  8. ^ Cao, Renping; Peng, Mingying; Zheng, Jiayu; Qiu, Jianrong; Zhang, Qinyuan (2012-07-30). "Superbroad near to mid infrared luminescence from closo-deltahedral Bi3+
    5
    cluster in Bi5(GaCl4)3"
    . Optics Express. 20 (16): 18505–18514. Bibcode:2012OExpr..2018505C. doi:10.1364/oe.20.018505. ISSN 1094-4087. PMID 23038400.
  9. ^ Sun, Hong-Tao; Xu, Beibei; Yonezawa, Tetsu; Sakka, Yoshio; Shirahata, Naoto; Fujii, Minoru; Qiu, Jianrong; Gao, Hong (2012-08-28). "Photoluminescence from Bi5(GaCl4)3 molecular crystal". Dalton Transactions. 41 (36): 11055–61. arXiv:1205.6889. doi:10.1039/c2dt31167d. ISSN 1477-9234. PMID 22864825. S2CID 19202220.
  10. ^ Sun, Hong-Tao; Sakka, Yoshio; Shirahata, Naoto; Gao, Hong; Yonezawa, Tetsu (2012-06-06). "Experimental and theoretical studies of photoluminescence from Bi2+
    8
    and Bi3+
    5
    stabilized by [AlCl4] in molecular crystals". Journal of Materials Chemistry. 22 (25): 12837. arXiv:1202.5395. doi:10.1039/c2jm30251a. ISSN 1364-5501. S2CID 95074461.
  11. ^ Sun, Hong-Tao; Zhou, Jiajia; Qiu, Jianrong (2014). "Recent advances in bismuth activated photonic materials". Progress in Materials Science. 64: 1–72. doi:10.1016/j.pmatsci.2014.02.002.