Bismuthyl (ion)

Bismuthyl (ion)

Bismuthyl (structural formula)
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Bi.O/q+1;
    Key: AFQPDONMRFOLIJ-UHFFFAOYSA-N
  • [Bi+]=O
Properties
BiO+
Molar mass 224.979 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bismuthyl is an inorganic oxygen-containing singly charged ion with the chemical formula BiO+, and is an oxycation of bismuth in the +3 oxidation state. Most often it is formed during the hydrolysis of trivalent bismuth salts, primarily nitrate, chloride and other halides. In chemical compounds, bismuthyl plays the role of a monovalent cation.

In inorganic chemistry bismuthyl has been used to describe compounds such as BiOCl which were assumed to contain the diatomic bismuthyl, BiO+, cation, that was also presumed to exist in aqueous solution.[1]

This diatomic ion is not now believed to exist.[2] Unlike other inorganic radicals such as hydroxyl, carbonyl, chromyl, uranyl or vanadyl, according to the current IUPAC rules, the name bismuthyl for BiO+ is not recommended, since individual molecules of these groups are not identifiable but atomic layers of Bi and O. Their presence in compounds preferably should be referred to as oxides.[3]: 16  However, the latter position remains controversial. For example, to this day the Russian school of inorganic chemistry still operates with bismuthyl and stibil (antimonyl) cations as actually existing radicals.

  1. ^ Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). Nicholas C. Norman (ed.). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 67–84. ISBN 0-7514-0389-X.
  2. ^ Wiberg, Egon; Holleman, A. F.; Wiberg, Nils (2001). Inorganic chemistry. Academic Press. ISBN 0-12-352651-5.
  3. ^ V. A. Kompantsev, L. P. Gokzhaeva, G. N. Shestakov, N. I. Krikova. Introduction to Inorganic Chemistry. — Pyatigorsk State Pharmaceutical Academy, 1996