Bismuthyl (structural formula)
| |
Identifiers | |
---|---|
3D model (JSmol)
|
|
ChemSpider | |
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
BiO+ | |
Molar mass | 224.979 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Bismuthyl is an inorganic oxygen-containing singly charged ion with the chemical formula BiO+, and is an oxycation of bismuth in the +3 oxidation state. Most often it is formed during the hydrolysis of trivalent bismuth salts, primarily nitrate, chloride and other halides. In chemical compounds, bismuthyl plays the role of a monovalent cation.
In inorganic chemistry bismuthyl has been used to describe compounds such as BiOCl which were assumed to contain the diatomic bismuthyl, BiO+, cation, that was also presumed to exist in aqueous solution.[1]
This diatomic ion is not now believed to exist.[2] Unlike other inorganic radicals such as hydroxyl, carbonyl, chromyl, uranyl or vanadyl, according to the current IUPAC rules, the name bismuthyl for BiO+ is not recommended, since individual molecules of these groups are not identifiable but atomic layers of Bi and O. Their presence in compounds preferably should be referred to as oxides.[3]: 16 However, the latter position remains controversial. For example, to this day the Russian school of inorganic chemistry still operates with bismuthyl and stibil (antimonyl) cations as actually existing radicals.