Boundary element method

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM),[1] fracture mechanics,[2] and contact mechanics.[3][4]

  1. ^ In electromagnetics, the more traditional term "method of moments" is often used, though not always, as a synonymous of "boundary element method": see (Gibson 2008) for further information on the subject.
  2. ^ The boundary element method is well suited for analyzing cracks in solids. There are several boundary element approaches for crack problems. One such approach is to formulate the conditions on the cracks in terms of hypersingular boundary integral equations, see (Ang 2013).
  3. ^ Pohrt, R.; Li, Q. (2014-10-01). "Complete boundary element formulation for normal and tangential contact problems". Physical Mesomechanics. 17 (4): 334–340. doi:10.1134/S1029959914040109. ISSN 1029-9599. S2CID 137494525.
  4. ^ "BEM Based Contact Pressure Calculation Tutorial". www.tribonet.org. 9 November 2017.