This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Boundary tracing, also known as contour tracing, of a binary digital region can be thought of as a segmentation technique that identifies the boundary pixels of the digital region. Boundary tracing is an important first step in the analysis of that region. Boundary is a topological notion. However, a digital image is no topological space. Therefore, it is impossible to define the notion of a boundary in a digital image mathematically exactly. Most publications about tracing the boundary of a subset S of a digital image I describe algorithms which find a set of pixels belonging to S and having in their direct neighborhood pixels belonging both to S and to its complement I - S. According to this definition the boundary of a subset S is different from the boundary of the complement I – S which is a topological paradox.
To define the boundary correctly it is necessary to introduce a topological space corresponding to the given digital image. Such space can be a two-dimensional abstract cell complex. It contains cells of three dimensions: the two-dimensional cells corresponding to pixels of the digital image, the one-dimensional cells or “cracks” representing short lines lying between two adjacent pixels, and the zero-dimensional cells or “points” corresponding to the corners of pixels. The boundary of a subset S is then a sequence of cracks and points while the neighborhoods of these cracks and points intersect both the subset S and its complement I – S.
The boundary defined in this way corresponds exactly to the topological definition and corresponds also to our intuitive imagination of a boundary because the boundary of S should contain neither elements of S nor those of its complement. It should contain only elements lying between S and the complement. This are exactly the cracks and points of the complex.
This method of tracing boundaries is described in the book of Vladimir A. Kovalevsky[1] and in the web site.[2]