CD28

CD28
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCD28, Tp44, CD28 molecule
External IDsOMIM: 186760; MGI: 88327; HomoloGene: 4473; GeneCards: CD28; OMA:CD28 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001243077
NM_001243078
NM_006139

NM_007642

RefSeq (protein)

NP_001230006
NP_001230007
NP_006130

NP_031668

Location (UCSC)Chr 2: 203.71 – 203.74 MbChr 1: 60.76 – 60.81 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

CD28 (Cluster of Differentiation 28) is a protein expressed on T cells that provides essential co-stimulatory signals required for T cell activation and survival. When T cells are stimulated through CD28 in conjunction with the T-cell receptor (TCR), it enhances the production of various interleukins, particularly IL-6. CD28 serves as a receptor for CD80 (B7.1) and CD86 (B7.2), proteins found on antigen-presenting cells (APCs).

CD28 is the only B7 receptor consistently expressed on naive T cells. In the absence of CD28:B7 interaction, a naive T cell's TCR engagement with an MHC:antigen complex leads to anergy. CD28 is also expressed on bone marrow stromal cells, plasma cells, neutrophils, and eosinophils, although its function in these cells is not fully understood.[5]

Typically, CD28 is expressed on about 50% of CD8+ T cells and more than 80% of CD4+ T cells in humans. However, some T cells lose CD28 expression during activation, particularly antigen-experienced T cells, which can be re-activated independently of CD28. These CD28 T cells are often antigen-specific, terminally differentiated, and categorized as memory T cells (TMs). The proportion of CD28 T cells increases with age.[6]

As a homodimer with Ig domains, CD28 binds B7 molecules on APCs, promoting T cell proliferation, differentiation, growth factor production, and the expression of anti-apoptotic proteins.[7] While CD28 is crucial for T cell activation, particularly in initial immune responses, some antigen-experienced T cells can function without it, marking their differentiation into cytotoxic memory cells.[8]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000178562Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026012Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Gray Parkin K, Stephan RP, Apilado RG, Lill-Elghanian DA, Lee KP, Saha B, et al. (September 2002). "Expression of CD28 by bone marrow stromal cells and its involvement in B lymphopoiesis". Journal of Immunology. 169 (5): 2292–2302. doi:10.4049/jimmunol.169.5.2292. PMID 12193694. S2CID 22737782.
  6. ^ Diaz D, Chara L, Chevarria J, Ubeda M, Muñoz L, Barcenilla H, et al. (2011). "Loss of surface antigens is a conserved feature of apoptotic lymphocytes from several mammalian species". Cellular Immunology. 271 (1): 163–172. doi:10.1016/j.cellimm.2011.06.018. PMID 21745657.
  7. ^ Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (May 2016). "CD28 Costimulation: From Mechanism to Therapy". Immunity. 44 (5): 973–988. doi:10.1016/j.immuni.2016.04.020. PMC 4932896. PMID 27192564.
  8. ^ Mou D, Espinosa J, Lo DJ, Kirk AD (November 2014). "CD28 negative T cells: is their loss our gain?". American Journal of Transplantation. 14 (11): 2460–2466. doi:10.1111/ajt.12937. PMC 4886707. PMID 25323029.