Part of a series on |
CRISPR |
---|
Genome editing: CRISPR-Cas |
variants: Anti-CRISPR - CIRTS - CRISPeYCRISPR-Cas10 - CRISPR-Cas13 - CRISPR-BEST CRISPR-Disp - CRISPR-Gold - CRISPRa - CRISPRi Easi-CRISPR - FACE |
Enzyme |
Cas9 - FokI - EcoRI - PstI - SmaI HaeIII - Cas12a (Cpf1) - xCas9 |
Applications |
CAMERA - ICE - Genética dirigida |
other Genome editing method: |
Prime editing - Pro-AG - RESCUE - TALEN - ZFN - LEAPER |
CRISPR activation (CRISPRa) is a gene regulation technique that utilizes an engineered form of the CRISPR-Cas9 system to enhance the expression of specific genes without altering the underlying DNA sequence. Unlike traditional CRISPR-Cas9, which introduces double-strand breaks to edit genes, CRISPRa employs a modified, catalytically inactive Cas9 (dCas9) fused with transcriptional activators to target promoter or enhancer regions, thereby boosting gene transcription. This method allows for precise control of gene expression, making it a valuable tool for studying gene function, creating gene regulatory networks, and developing potential therapeutic interventions for a variety of diseases.[1]
Like for CRISPR interference, the CRISPR effector is guided to the target by a complementary guide RNA. However, CRISPR activation systems are fused to transcriptional activators to increase expression of genes of interest. Such systems are usable for many purposes including but not limited to, genetic screens and overexpression of proteins of interest. The most commonly-used effector is based on Cas9 (from Type II systems), but other effectors like Cas12a (Type V) have been used as well.[2]
pmid34407984
was invoked but never defined (see the help page).