In the mathematical field of graph theory, a cage is a regular graph that has as few vertices as possible for its girth.
Formally, an (r, g)-graph is defined to be a graph in which each vertex has exactly r neighbors, and in which the shortest cycle has length exactly g. An (r, g)-cage is an (r, g)-graph with the smallest possible number of vertices, among all (r, g)-graphs. A (3, g)-cage is often called a g-cage.
It is known that an (r, g)-graph exists for any combination of r ≥ 2 and g ≥ 3. It follows that all (r, g)-cages exist.
If a Moore graph exists with degree r and girth g, it must be a cage. Moreover, the bounds on the sizes of Moore graphs generalize to cages: any cage with odd girth g must have at least
vertices, and any cage with even girth g must have at least
vertices. Any (r, g)-graph with exactly this many vertices is by definition a Moore graph and therefore automatically a cage.
There may exist multiple cages for a given combination of r and g. For instance there are three non-isomorphic (3, 10)-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. But there is only one (3, 11)-cage: the Balaban 11-cage (with 112 vertices).