In near-field scanning optical microscopy the campanile probe is a tapered optical probe with a shape of a campanile (a square pyramid). It is made of an optically transparent dielectric, typically silica, and its two facets are coated with a metal, typically gold. At the probe tip, the metal-coated facets are separated by a gap of a few tens of nanometers, which determines the spatial resolution of the probe. Such a probe design allows collecting optical signals, usually photoluminescence (PL) or Raman scattering, with a subwavelength resolution, breaking the diffraction limit.[1][3]
The campanile probe is attached to an optical fiber, which both provides a laser excitation of the studied sample and collects the measured signal. The probe is rastered over the sample with a standard scanning probe microscopy scanner, keeping the distance to the sample surface at a few nanometers.[1] Contrary to the traditional (circular) near-field probes, the campanile probe has no cut-off frequency and is insensitive to the spatial mode of the optical near field. Hence its application is not limited to thin-film samples.[3] Another advantage of the campanile probe is a high signal collection efficiency, which exceeds 90%.[4]
Campanile probes are typically fabricated as follows: a standard cylindrical single-mode optical fiber is etched with hydrofluoric acid to create a conical tip with a radius of ca. 100 nm. Then a square pyramid is carved on the tip using focused ion beam (FIB) milling, and its two facets are coated with a metal by shadow evaporation. A nanometer gap is then opened on the tip by FIB.[3] Alternative fabrication method uses nanoimprint lithography to replicate campanile pyramid from a mold. This approach significantly increases fabrication speed.[2]
r1
was invoked but never defined (see the help page).r2
was invoked but never defined (see the help page).r3
was invoked but never defined (see the help page).