Carbocyclic nucleoside

Carbocyclic nucleosides (also referred to as carbanucleosides) are nucleoside analogues in which a methylene group has replaced the oxygen atom of the furanose ring.[1] These analogues have the nucleobase attached at a simple alkyl carbon rather than being part of a hemiaminal ether linkage. As a result, they have increased chemical stability. They also have increased metabolic stability because they are unaffected by phosphorylases and hydrolases that cleave the glycosidic bond between the nucleobase and furanose ring of nucleosides. They retain many of the biological properties of the original nucleosides with respect to recognition by various enzymes and receptors.

Carbocyclic nucleosides were originally limited to a five-membered ring system, matching the ring-size of the nucleosides; however, this term has been broadened to three-, four-, and six-membered rings.[2][3][4]

3-, 4-, and 6-membered ring carbocyclic nucleosides
  1. ^ Marquez VE, Lim MI (January 1986). "Carbocyclic nucleosides". Medicinal Research Reviews. 6 (1): 1–40. doi:10.1002/med.2610060102. PMID 3512934. S2CID 221956841.
  2. ^ Zhu XF (March 2000). "The latest progress in the synthesis of carbocyclic nucleosides". Nucleosides, Nucleotides & Nucleic Acids. 19 (3): 651–690. doi:10.1080/15257770008035015. PMID 10843500. S2CID 43360920.
  3. ^ Cite error: The named reference Wang was invoked but never defined (see the help page).
  4. ^ Rodrguez JB, Comin MJ (March 2003). "New progresses in the enantioselective synthesis and biological properties of carbocyclic nucleosides". Mini Reviews in Medicinal Chemistry. 3 (2): 95–114. doi:10.2174/1389557033405331. hdl:11336/90989. PMID 12570843.