Carbon farming

Measuring soil respiration on agricultural land. Carbon farming enhances carbon sequestration in the soil.

Carbon farming is a set of agricultural methods that aim to store carbon in the soil, crop roots, wood and leaves. The technical term for this is carbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere.[1] This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase the soil's organic matter content. This can also aid plant growth, improve soil water retention capacity[2] and reduce fertilizer use.[3] Sustainable forest management is another tool that is used in carbon farming.[4] Carbon farming is one component of climate-smart agriculture. It is also one way to remove carbon dioxide from the atmosphere.

Agricultural methods for carbon farming include adjusting how tillage and livestock grazing is done, using organic mulch or compost, working with biochar and terra preta, and changing the crop types. Methods used in forestry include reforestation and bamboo farming.

Carbon farming methods might have additional costs. Some countries have government policies that give financial incentives to farmers to use carbon farming methods.[5] As of 2016, variants of carbon farming reached hundreds of millions of hectares globally, of the nearly 5 billion hectares (1.2×1010 acres) of world farmland.[6] Carbon farming has some disadvantages because some of its methods can affect ecosystem services. For example, carbon farming could cause an increase of land clearing, monocultures and biodiversity loss.[7] It is important to maximize environmental benefits of carbon farming by keeping in mind ecosystem services at the same time.[7]

  1. ^ Nath, Arun Jyoti; Lal, Rattan; Das, Ashesh Kumar (2015-01-01). "Managing woody bamboos for carbon farming and carbon trading". Global Ecology and Conservation. 3: 654–663. Bibcode:2015GEcoC...3..654N. doi:10.1016/j.gecco.2015.03.002. ISSN 2351-9894.
  2. ^ "Carbon Farming | Carbon Cycle Institute". www.carboncycle.org. Archived from the original on 2021-05-21. Retrieved 2018-04-27.
  3. ^ Almaraz, Maya; Wong, Michelle Y.; Geoghegan, Emily K.; Houlton, Benjamin Z. (2021). "A review of carbon farming impacts on nitrogen cycling, retention, and loss". Annals of the New York Academy of Sciences. 1505 (1): 102–117. Bibcode:2021NYASA1505..102A. doi:10.1111/nyas.14690. ISSN 0077-8923. PMID 34580879. S2CID 238202676.
  4. ^ Jindal, Rohit; Swallow, Brent; Kerr, John (2008). "Forestry-based carbon sequestration projects in Africa: Potential benefits and challenges". Natural Resources Forum. 32 (2): 116–130. doi:10.1111/j.1477-8947.2008.00176.x. ISSN 1477-8947.
  5. ^ Tang, Kai; Kragt, Marit E.; Hailu, Atakelty; Ma, Chunbo (2016-05-01). "Carbon farming economics: What have we learned?". Journal of Environmental Management. 172: 49–57. Bibcode:2016JEnvM.172...49T. doi:10.1016/j.jenvman.2016.02.008. ISSN 0301-4797. PMID 26921565.
  6. ^ Burton, David. "How carbon farming can help solve climate change". The Conversation. Retrieved 2018-04-27.
  7. ^ a b Cite error: The named reference Lin-2013 was invoked but never defined (see the help page).