In mathematics, a Carleson measure is a type of measure on subsets of n-dimensional Euclidean space Rn. Roughly speaking, a Carleson measure on a domain Ω is a measure that does not vanish at the boundary of Ω when compared to the surface measure on the boundary of Ω.
Carleson measures have many applications in harmonic analysis and the theory of partial differential equations, for instance in the solution of Dirichlet problems with "rough" boundary. The Carleson condition is closely related to the boundedness of the Poisson operator. Carleson measures are named after the Swedish mathematician Lennart Carleson.