In number theory, a branch of mathematics, the Carmichael function λ(n) of a positive integer n is the smallest positive integer m such that
holds for every integer a coprime to n. In algebraic terms, λ(n) is the exponent of the multiplicative group of integers modulo n. As this is a finite abelian group, there must exist an element whose order equals the exponent, λ(n). Such an element is called a primitive λ-root modulo n.
The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910.[1] It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
The order of the multiplicative group of integers modulo n is φ(n), where φ is Euler's totient function. Since the order of an element of a finite group divides the order of the group, λ(n) divides φ(n). The following table compares the first 36 values of λ(n) (sequence A002322 in the OEIS) and φ(n) (in bold if they are different; the ns such that they are different are listed in OEIS: A033949).
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ(n) | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 2 | 6 | 4 | 10 | 2 | 12 | 6 | 4 | 4 | 16 | 6 | 18 | 4 | 6 | 10 | 22 | 2 | 20 | 12 | 18 | 6 | 28 | 4 | 30 | 8 | 10 | 16 | 12 | 6 |
φ(n) | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 | 8 | 30 | 16 | 20 | 16 | 24 | 12 |