A carrier recovery system is a circuit used to estimate and compensate for frequency and phase differences between a received signal's carrier wave and the receiver's local oscillator for the purpose of coherent demodulation.
In the transmitter of a communications carrier system, a carrier wave is modulated by a baseband signal. At the receiver, the baseband information is extracted from the incoming modulated waveform.
In an ideal communications system, the carrier signal oscillators of the transmitter and receiver would be perfectly matched in frequency and phase, thereby permitting perfect coherent demodulation of the modulated baseband signal.
However, transmitters and receivers rarely share the same carrier oscillator. Communications receiver systems are usually independent of transmitting systems and contain their oscillators with frequency and phase offsets and instabilities. Doppler shift may also contribute to frequency differences in mobile radio frequency communications systems.
All these frequencies and phase variations must be estimated using the information in the received signal to reproduce or recover the carrier signal at the receiver and permit coherent demodulation.