Centipede game

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds (hence the name), any game with this structure but a different number of rounds is called a centipede game.

The unique subgame perfect equilibrium (and every Nash equilibrium) of these games results in the first player taking the pot on the first round of the game; however, in empirical tests, relatively few players do so, and as a result, achieve a higher payoff than in the subgame perfect and Nash equilibria. These results are taken to show that subgame perfect equilibria and Nash equilibria fail to predict human play in some circumstances. The Centipede game is commonly used in introductory game theory courses and texts to highlight the concept of backward induction and the iterated elimination of dominated strategies, which show a standard way of providing a solution to the game.