Part of a series of articles on |
Nanomaterials |
---|
Carbon nanotubes |
Fullerenes |
Other nanoparticles |
Nanostructured materials |
Ceramic nanoparticle is a type of nanoparticle that is composed of ceramics, which are generally classified as inorganic, heat-resistant, nonmetallic solids that can be made of both metallic and nonmetallic compounds. The material offers unique properties. Macroscale ceramics are brittle and rigid and break upon impact. However, Ceramic nanoparticles take on a larger variety of functions,[1] including dielectric, ferroelectric, piezoelectric, pyroelectric, ferromagnetic, magnetoresistive, superconductive and electro-optical.
Ceramic nanoparticle were discovered in the early 1980s. They were formed using a process called sol-gel which mixes nanoparticles within a solution and gel to form the nanoparticle. Later methods involved sintering (pressure and heat, .e.g hot isostatic pressing). The material is so small that it has basically no flaws. Larger scale materials have flaws that render them brittle.
In 2014 researchers announced a lasering process involving polymers and ceramic particles to form a nanotruss. This structure was able to recover its original form after repeated crushing.[citation needed]
Ceramic nanoparticles have been used as drug delivery mechanism in several diseases including bacterial infections, glaucoma, and most commonly, chemotherapy deliver in experimental cancer treatment.[2]