In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1971, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). In 1982, Peter Buser proved a reverse version of this inequality, and the two inequalities put together are sometimes called the Cheeger-Buser inequality. These inequalities were highly influential not only in Riemannian geometry and global analysis, but also in the theory of Markov chains and in graph theory, where they have inspired the analogous Cheeger constant of a graph and the notion of conductance.