Probability distribution of random variable
In probability theory, Chernoff's distribution, named after Herman Chernoff, is the probability distribution of the random variable
where W is a "two-sided" Wiener process (or two-sided "Brownian motion") satisfying W(0) = 0.
If
then V(0, c) has density
where gc has Fourier transform given by
and where Ai is the Airy function. Thus fc is symmetric about 0 and the density ƒZ = ƒ1. Groeneboom (1989)[1] shows that
where is the largest zero of the Airy function Ai and where . In the same paper, Groeneboom also gives an analysis of the process . The connection with the statistical problem of estimating a monotone density is discussed in Groeneboom (1985).[2] Chernoff's distribution is now known to appear in a wide range of monotone problems including isotonic regression.[3]
The Chernoff distribution should not be confused with the Chernoff geometric distribution[4] (called the Chernoff point in information geometry) induced by the Chernoff information.