This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.
The basics of the method for radar applications were developed in the late 1940s and early 1950s,[1][2][3] but it was not until 1960, following declassification of the subject matter, that a detailed article on the topic appeared the public domain.[4] Thereafter, the number of published articles grew quickly, as demonstrated by the comprehensive selection of papers to be found in a compilation by Barton.[5]
Briefly, the basic pulse compression properties can be related as follows. For a chirp waveform that sweeps over a frequency range F1 to F2 in a time period T, the nominal bandwidth of the pulse is B, where B = F2 – F1, and the pulse has a time-bandwidth product of T×B. Following pulse compression, a narrow pulse of duration τ is obtained, where τ ≈ 1/B, together with a peak voltage amplification of √T×B.