Chlamydomonas nivalis

Chlamydomonas nivalis
Scientific classification Edit this classification
Clade: Viridiplantae
Division: Chlorophyta
Class: Chlorophyceae
Order: Chlamydomonadales
Family: Chlamydomonadaceae
Genus: Chlamydomonas
Species:
C. nivalis
Binomial name
Chlamydomonas nivalis
Synonyms[4][5][6]
  • Chloromonas typhlos[1][2]
  • Chloromonas reticula[2][3]
  • Uredo nivalis
  • Sphaerella nivalis
  • Protococcus nivalis
  • Haematococcus nivalis

Chlamydomonas nivalis, also referred to as Chloromonas typhlos,[2][1] is a unicellular red-coloured photosynthetic green alga that is found in the snowfields of the alps and polar regions all over the world. They are one of the main algae responsible for causing the phenomenon of watermelon snow (also blood snow, raspberry snow[7]), where patches of snow appear red or pink. The first account of microbial communities that form red snow was made by Aristotle. Researchers have been active in studying this organism for over 100 years.

Although C. nivalis is closely related to Chlamydomonas reinhardtii, the environmental conditions each species inhabits are very different. C. nivalis can be found in mountains, snowfields, and polar regions around the world. The habitat of C. nivalis subjects the cells to environmental extremes including limited nutrients, low temperatures, and intense sunlight. In comparison with the mesophilic C. reinhardtii, C. nivalis has special mechanisms that allow it to be cryotolerant and survive on rock surfaces as well as in soil, meltwater, and snow. Secondary carotenoids, a thick cell wall, and particles on the cell wall are some characteristics that protect the cyst from light, drought, and radiation stress. Although the seasonal mobile to dormant life cycle of C. nivalis is complex, it also helps the algae exploit its niche and survive unfavourable conditions. As a result, C. nivalis is one of the best known and studied snow algae. When taking account of the photoprotective effect of its secondary carotenoid, astaxanthin, among the other adaptive mechanisms to its extreme habitat, it can be understood how C. nivalis became so dominant in microbial snow algae communities. Green motile offspring are produced in the spring and throughout the summer. They develop into red dormant cysts, the stage where this organism spends most of its life cycle, as the winter season begins and remain a cyst until the spring.

This alga is an interesting organism for researchers in various fields to study due to its possible role in lowering global albedo, ability to survive in extreme environments, and production of commercially relevant compounds. Additionally, its life cycle is still being studied today in an effort to better understand this organism and amend previous classification errors.

  1. ^ a b Schoeters, Floris; Spit, Jornt; Azizah, Rahmasari Nur; Van Miert, Sabine (2022). "Pilot-Scale Cultivation of the Snow Alga Chloromonas typhlos in a Photobioreactor". Frontiers in Bioengineering and Biotechnology. 10: 896261. doi:10.3389/fbioe.2022.896261. ISSN 2296-4185. PMC 9218667. PMID 35757813.
  2. ^ a b c "SAG 26.86 Chloromonas typhlos". sagdb.uni-goettingen.de.
  3. ^ Matsuzaki, Ryo; Hara, Yoshiaki; Nozaki, Hisayoshi (1 January 2012). "A taxonomic revision of Chloromonas reticulata (Volvocales, Chlorophyceae), the type species of the genus Chloromonas, based on multigene phylogeny and comparative light and electron microscopy". Phycologia. 51 (1): 74–85. doi:10.2216/11-18.1. ISSN 0031-8884. S2CID 85094898.
  4. ^ Cite error: The named reference sutton1970 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference cvetkovska2016 was invoked but never defined (see the help page).
  6. ^ Cite error: The named reference cepak2013 was invoked but never defined (see the help page).
  7. ^ "Blood snow invades an Antarctic island". 28 February 2020.