Choked flow

Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.

Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe) into a lower pressure environment the fluid velocity increases. At initially subsonic upstream conditions, the conservation of energy principle requires the fluid velocity to increase as it flows through the smaller cross-sectional area of the constriction. At the same time, the venturi effect causes the static pressure, and therefore the density, to decrease at the constriction. Choked flow is a limiting condition where the mass flow cannot increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature.

For homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions is when the exit plane velocity is at sonic conditions; i.e., at a Mach number of 1.[1][2][3] At choked flow, the mass flow rate can be increased only by increasing the upstream density of the substance.

The choked flow of gases is useful in many engineering applications because the mass flow rate is independent of the downstream pressure, and depends only on the temperature and pressure and hence the density of the gas on the upstream side of the restriction. Under choked conditions, valves and calibrated orifice plates can be used to produce a desired mass flow rate.

  1. ^ Perry's Chemical Engineers' Handbook, Sixth Edition, McGraw-Hill Co., 1984.
  2. ^ Handbook of Chemical Hazard Analysis Procedures, Appendix B, Federal Emergency Management Agency, U.S. Dept. of Transportation, and U.S. Environmental Protection Agency, 1989. Handbook of Chemical Hazard Analysis, Appendix B Click on PDF icon, wait and then scroll down to page 391 of 520 PDF pages.
  3. ^ Methods For The Calculation Of Physical Effects Due To Releases Of Hazardous Substances (Liquids and Gases), PGS2 CPR 14E, Chapter 2, The Netherlands Organization Of Applied Scientific Research, The Hague, 2005. PGS2 CPR 14E Archived 2007-08-09 at the Wayback Machine