Cimoliopterus Temporal range: Cenomanian
~ | |
---|---|
Holotype snout tip of C. cuvieri shown from the right side and below | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Order: | †Pterosauria |
Suborder: | †Pterodactyloidea |
Clade: | †Ornithocheirae |
Clade: | †Targaryendraconia |
Family: | †Cimoliopteridae |
Genus: | †Cimoliopterus Rodrigues & Kellner, 2013 |
Type species | |
†Pterodactylus cuvieri Bowerbank, 1851
| |
Species | |
| |
Synonyms | |
Genus synonymy
Synonyms of C. cuvieri
|
Cimoliopterus is a genus of pterosaur that lived during the Late Cretaceous in what is now England and the United States. The first known specimen, consisting of the front part of a snout including part of a crest, was discovered in the Grey Chalk Subgroup of Kent, England, and described as the new species Pterodactylus cuvieri in 1851. The specific name cuvieri honours the palaeontologist George Cuvier, whereas the genus Pterodactylus was then used for many pterosaur species that are not thought to be closely related today. It was among the first pterosaurs to be depicted as sculptures, in Crystal Palace Park in the 1850s. The species was subsequently assigned to various other genera, including Ornithocheirus and Anhanguera. In 2013, the species was moved to a new genus, as Cimoliopterus cuvieri; the generic name Cimoliopterus is derived from the Greek words for "chalk" and "wing". Other specimens and species have also been assigned to or synonymised with the species with various levels of certainty. In 2015, a snout discovered in the Britton Formation of Texas, US, was named as a new species in the genus, C. dunni; the specific name honours its collector, Brent Dunn.
C. cuvieri is estimated to have had a wingspan of 3.5 metres (11 ft), and C. dunni is thought to have been similar to C. cuvieri in size. Cimoliopterus can be distinguished from related pterosaurs in features such as having a premaxillary crest that begins hindward on the snout, in having a ridge on the palate that extends forwards until the third pair of tooth sockets, and in the spacing and proportions of the tooth sockets. Unlike similar pterosaurs, the tip of the snout is only subtly expanded to the sides. C. cuvieri and C. dunni differ from each other in various details in the configuration of these features; for example, the crest of C. cuvieri begins by the seventh tooth socket, whereas that of C. dunni begins at the fourth. More completely known related genera were fairly large pterosaurs, with proportionally large skulls, long jaws and tooth-rows, often with large, rounded crests at the front of the jaws. The teeth at the front of the jaws were large and recurved; further back, the teeth were smaller, slightly recurved, and well-spaced. As pterosaurs, Cimoliopterus would have been covered in pycnofibres (hair-like filaments), and had extensive wing-membranes, which were distended by long wing-fingers.
While long considered an ornithocheiran, the affinities of C. cuvieri were unclear due to the fragmentary nature of it and other English pterosaurs, until more complete relatives were reported from Brazil in the 1980s. Cimoliopterus was moved to the family Cimoliopteridae within the clade Targaryendraconia in 2019, with its closest relative being Camposipterus. That C. cuvieri and C. dunni, from England and North America respectively, were so similar despite living on opposite sides of the North Atlantic Ocean indicates they became less isolated from each other than other animal groups because they could fly. This kind of pterosaur was probably adapted for long-distance oceanic soaring, which is also supported by their fossils mainly being found in marine settings. While they may have been proficient in water, their terrestrial abilities were limited due to their short hindlimbs but long forelimbs. They possibly fed while flying by dipping their long jaws into water and catching fish with their interlocking teeth. While some have suggested the premaxillary crests were used to stabilise the jaws while submerged in water during feeding, they may have been used as display structures instead.