Circumconic and inconic

In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle,[1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.[2]

Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle BAC at vertex A, and similarly for B and C as angles in ABC. Let the sidelengths of ABC.

In trilinear coordinates, the general circumconic is the locus of a variable point satisfying an equation

for some point u : v : w. The isogonal conjugate of each point X on the circumconic, other than A, B, C, is a point on the line

This line meets the circumcircle of ABC in 0,1, or 2 points according as the circumconic is an ellipse, parabola, or hyperbola.

The general inconic is tangent to the three sidelines of ABC and is given by the equation

  1. ^ Weisstein, Eric W. "Circumconic." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Circumconic.html
  2. ^ Weisstein, Eric W. "Inconic." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Inconic.html