The clustering illusion is the tendency to erroneously consider the inevitable "streaks" or "clusters" arising in small samples from random distributions to be non-random. The illusion is caused by a human tendency to underpredict the amount of variability likely to appear in a small sample of random or pseudorandom data.[1]
Thomas Gilovich, an early author on the subject, argued that the effect occurs for different types of random dispersions. Some might perceive patterns in stock market price fluctuations over time, or clusters in two-dimensional data such as the locations of impact of World War II V-1 flying bombs on maps of London.[1][2] Although Londoners developed specific theories about the pattern of impacts within London, a statistical analysis by R. D. Clarke originally published in 1946 showed that the impacts of V-2 rockets on London were a close fit to a random distribution.[3][4][5][6][7]