Co-simulation

In co-simulation, the different subsystems that form a coupled problem are modeled and simulated in a distributed manner. Hence, the modeling is done on the subsystem level without having the coupled problem in mind. Furthermore, the coupled simulation is carried out by running the subsystems in a black-box manner. During the simulation, the subsystems will exchange data. Co-simulation can be considered as the joint simulation of the already well-established tools and semantics; when they are simulated with their suitable solvers.[1] Co-simulation proves its advantage in validation of multi-domain and cyber-physical systems by offering a flexible solution that allows consideration of multiple domains with different time steps, at the same time. As the calculation load is shared among simulators, co-simulation also enables the possibility of large-scale system assessment.[2]

  1. ^ Steinbrink, Cornelius (2017). "Simulation-based Validation of Smart Grids – Status Quo and Future Research Trends". Industrial Applications of Holonic and Multi-Agent Systems. Lecture Notes in Computer Science. Vol. 10444. pp. 171–185. arXiv:1710.02315. doi:10.1007/978-3-319-64635-0_13. ISBN 978-3-319-64634-3. S2CID 10022783.
  2. ^ Andersson, Håkan (2018-09-11). A Co-Simulation Approach for Hydraulic Percussion Units. Linköping University Electronic Press. ISBN 978-91-7685-222-4.