Co-stardom network

In social network analysis, the co-stardom network represents the collaboration graph of film actors i.e. movie stars. The co-stardom network can be represented by an undirected graph. Nodes correspond to the movie star actors and two nodes are linked if they co-starred (performed) in the same movie. The links are un-directed, and can be weighted or not depending on the goals of study. If the number of times two actors appeared in a movie is needed, links are assigned weights.[1] Initially, the network was found to have a small-world property.[2] Afterwards, it was discovered that more precisely it exhibits a scale-free (power-law) behavior.[3]

The co-stardom network can also be represented by a bipartite graph where nodes are of two types: actors and movies. Links connect different types of nodes (i.e. actors to movies) if they have a relationship (actors in a movie).[4]

The parlor game of Six Degrees of Kevin Bacon involves finding paths in this network from specified actors to Kevin Bacon.

  1. ^ Albert, Réka; Barabási, Albert-László (2002-01-30). "Statistical mechanics of complex networks" (PDF). Reviews of Modern Physics. 74 (1): 47–97. arXiv:cond-mat/0106096. Bibcode:2002RvMP...74...47A. doi:10.1103/revmodphys.74.47. ISSN 0034-6861. Archived from the original (PDF) on 2011-07-07.
  2. ^ Watts, Duncan J.; Strogatz, Steven H. (1998). "Collective dynamics of 'small-world' networks". Nature. 393 (6684). Springer Nature: 440–442. Bibcode:1998Natur.393..440W. doi:10.1038/30918. ISSN 0028-0836. PMID 9623998.
  3. ^ Barabási, Albert-László; Albert, Réka (1999-10-15). "Emergence of Scaling in Random Networks". Science. 286 (5439): 509–512. arXiv:cond-mat/9910332. Bibcode:1999Sci...286..509B. doi:10.1126/science.286.5439.509. ISSN 0036-8075. PMID 10521342.
  4. ^ Newman, M. E. J.; Strogatz, S. H.; Watts, D. J. (2001-07-24). "Random graphs with arbitrary degree distributions and their applications". Physical Review E. 64 (2): 026118. arXiv:cond-mat/0007235. Bibcode:2001PhRvE..64b6118N. doi:10.1103/physreve.64.026118. ISSN 1063-651X. PMID 11497662.