In statistical inference, the concept of a confidence distribution (CD) has often been loosely referred to as a distribution function on the parameter space that can represent confidence intervals of all levels for a parameter of interest. Historically, it has typically been constructed by inverting the upper limits of lower sided confidence intervals of all levels, and it was also commonly associated with a fiducial[1] interpretation (fiducial distribution), although it is a purely frequentist concept.[2] A confidence distribution is NOT a probability distribution function of the parameter of interest, but may still be a function useful for making inferences.[3]
In recent years, there has been a surge of renewed interest in confidence distributions.[3] In the more recent developments, the concept of confidence distribution has emerged as a purely frequentist concept, without any fiducial interpretation or reasoning. Conceptually, a confidence distribution is no different from a point estimator or an interval estimator (confidence interval), but it uses a sample-dependent distribution function on the parameter space (instead of a point or an interval) to estimate the parameter of interest.
A simple example of a confidence distribution, that has been broadly used in statistical practice, is a bootstrap distribution.[4] The development and interpretation of a bootstrap distribution does not involve any fiducial reasoning; the same is true for the concept of a confidence distribution. But the notion of confidence distribution is much broader than that of a bootstrap distribution. In particular, recent research suggests that it encompasses and unifies a wide range of examples, from regular parametric cases (including most examples of the classical development of Fisher's fiducial distribution) to bootstrap distributions, p-value functions,[5] normalized likelihood functions and, in some cases, Bayesian priors and Bayesian posteriors.[6]
Just as a Bayesian posterior distribution contains a wealth of information for any type of Bayesian inference, a confidence distribution contains a wealth of information for constructing almost all types of frequentist inferences, including point estimates, confidence intervals, critical values, statistical power and p-values,[7] among others. Some recent developments have highlighted the promising potentials of the CD concept, as an effective inferential tool.[3]
Fisher1930
was invoked but never defined (see the help page).cox1958
was invoked but never defined (see the help page).Xie2013r
was invoked but never defined (see the help page).Efron1998
was invoked but never defined (see the help page).Fraser1991
was invoked but never defined (see the help page).Xie2011
was invoked but never defined (see the help page).