In kinesiology, core stability is a person's ability to stabilize their core (all parts of the body which are not limbs). Stability, in this context, should be considered as an ability to control the position and movement of the core. Thus, if a person has greater core stability, they have a greater level of control over the position and movement of this area of their body. The body's core is frequently involved in aiding other movements of the body, such as running; thus it is known that improving core stability also improves a person's ability to perform these other movements.[1]
The body's core region is sometimes referred to as the torso or the trunk, although there are some differences in the muscles identified as constituting them. The major muscles involved in core stability include the pelvic floor muscles, transversus abdominis, multifidus, internal and external obliques, rectus abdominis, erector spinae (sacrospinalis) especially the longissimus thoracis, and the diaphragm. Notably, breathing, including the action of the diaphragm, can significantly influence the posture and movement of the core; this is especially apparent in regard to extreme ranges of inhalation and exhalation. On this basis, how a person is breathing may influence their ability to control their core.
Some researchers have argued that the generation of intra-abdominal pressure, caused by the activation of the core muscles and especially the transversus abdominis, may serve to lend support to the lumbar spine.[2] One way in which intra-abdominal pressure can be increased is by the adoption of a deeper breathing pattern. In this case, and as considered by Hans Lindgren, 'The diaphragm [...] performs its breathing function at a lower position to facilitate a higher IAP.'[3] Thus, the adoption of a deeper breathing pattern may improve core stability.
Typically, the core is associated with the body's center of gravity (COG). In the 'standard anatomical position' the COG is identified as being anterior to the second sacral vertebrae. However, the precise location of a person's COG changes with every movement they make.[4] Michael Yessis argues that it is the lumbar spine that is primarily responsible for posture and stability, and thus provides the strength and stability required for dynamic sports.[5]